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Linear Multistep Methods

The Linear Multistep Methods (LMM’s) are probably the most natural extension to time marching of the space
differencing schemes.

1∑

k=1−K

αkun+k = h

1∑

k=1−K

βku′n+k

Applying the representative ODE, u′ = λu + aeµt, the charactistic polynominals P (E) and Q(E)

[(
1∑

k=1−K

αkEk

)
−

(
1∑

k=1−K

βkEk

)
hλ

]
un = h

(
1∑

k=1−K

βkEk

)
aeµhn

[P (E)] un = Q(E)aeµhn

Consistency requires that σ → 1 as h → 0 which is met if
∑

k

αk = 0 and
∑

k

βk =
∑

k

(K + k − 1)αk

“Normalization” results in
∑

k βk = 1
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Families of Linear Multistep Methods

1. Adams-Moulton family
α1 = 1, α0 = −1, αk = 0, k = −1,−2, · · ·

2. Adams-Bashforth family has the same α’s with the additional constraint that β1 = 0.

3. Three-step Adams-Moulton method can be written in the following form

un+1 = un + h(β1u
′
n+1 + β0u

′
n + β−1u

′
n−1 + β−2u

′
n−2)

Taylor tables can be used to find classes of second, third and fourth order methods.

4. For example, with β1 = 0 and

β0 = 23/12, β−1 = −16/12, β−2 = 5/12

produces the third-order Adams-Bashforth method.
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Examples of Linear Multistep Methods

Explicit Methods

un+1 = un + hu′n Euler
un+1 = un−1 + 2hu′n Leapfrog
un+1 = un + 1

2h
[
3u′n − u′n−1

]
AB2

un+1 = un + h
12

[
23u′n − 16u′n−1 + 5u′n−2

]
AB3

Implicit Methods

un+1 = un + hu′n+1 Implicit Euler
un+1 = un + 1

2h
[
u′n + u′n+1

]
Trapezoidal (AM2)

un+1 = 1
3

[
4un − un−1 + 2hu′n+1

]
2nd-order Backward

un+1 = un + h
12

[
5u′n+1 + 8u′n − u′n−1

]
AM3
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Two-Step Linear Multistep Methods

1. Minimal storage requirements for high-resolution CFD problems restrict methods to two time levels.

2. Most general scheme (1 + ξ)un+1 = [(1 + 2ξ)un − ξun−1] + h [ θu′n+1 + (1− θ + ϕ)u′n − ϕu′n−1

]

3. Examples:

θ ξ ϕ Method Order

0 0 0 Euler 1
1 0 0 Implicit Euler 1

1/2 0 0 Trapezoidal or AM2 2
1 1/2 0 2nd Order Backward 2

3/4 0 −1/4 Adams type 2
1/3 −1/2 −1/3 Lees 2
1/2 −1/2 −1/2 Two–step trapezoidal 2
5/9 −1/6 −2/9 A–contractive 2

0 −1/2 0 Leapfrog 2
0 0 1/2 AB2 2
0 −5/6 −1/3 Most accurate explicit 3

1/3 −1/6 0 Third–order implicit 3
5/12 0 1/12 AM3 3
1/6 −1/2 −1/6 Milne 4

4. Both erµ and erλ are reduced to 0(h3) if ϕ = ξ − θ + 1
2

5. The class of all 3rd-order methods ξ = 2θ − 5
6

6. Unique fourth-order method is found by setting θ = −ϕ = −ξ/3 = 1
6 .
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Predictor-Corrector Methods

1. Predictor-corrector methods are composed of sequences of linear multistep methods.

2. Simple one-predictor, one-corrector scheme

ũn+α = un + αhu′n
un+1 = un + h

[
βũ′n+α + γu′n

]

3. α, β and γ are arbitrary parameters.

P (E) = Eα · [E − 1− (γ + β)λh− αβλ2h2
]

Q(E) = Eα · h · [βEα + γ + αβλh]

4. Second-order accuracy: both erλ and erµ must be O(h3).

5. Leads to: γ + β = 1 ; αβ = 1
2

6. Second-order accurate predictor-corrector sequence for any α

ũn+α = un + αhu′n

un+1 = un +
1
2
h

[(
1
α

)
ũ′n+α +

(
2α− 1

α

)
u′n

]
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Predictor-Corrector Methods: Examples

1. The Adams-Bashforth-Moulton sequence for k = 3

ũn+1 = un +
1
2
h
[
3u′n − u′n−1

]

un+1 = un +
h

12
[
5ũ′n+1 + 8u′n − u′n−1

]

2. The Gazdag method

ũn+1 = un +
1
2
h
[
3ũ′n − ũ′n−1

]

un+1 = un +
1
2
h
[
ũ′n + ũ′n+1

]

3. The Burstein method α = 1/2 is

ũn+1/2 = un +
1
2
hu′n

un+1 = un + hũ′n+1/2

4. MacCormack’s method

ũn+1 = un + hu′n

un+1 =
1
2
[un + ũn+1 + hũ′n+1]
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Runge-Kutta Methods

1. Runge-Kutta method of order k (up to 4th order), the principal (and only) σ-root is given by

σ = 1 + λh +
1
2
λ2h2 + · · ·+ 1

k!
λkhk

2. To ensure kth order accuracy, the method must have erµ = O(hk+1)

3. General RK(N) scheme

ûn+α = un + βhu′n
ũn+α1 = un + β1hu′n + γ1hû′n+α

un+α2 = un + β2hu′n + γ2hû′n+α + δ2hũ′n+α1

un+1 = un + µ1hu′n + µ2hû′n+α + µ3hũ′n+α1
+ µ4hu′n+α2

4. Total of 13 free parameters, where the choices for the time samplings, α, α1, and α2, are not arbitrary.

α = β

α1 = β1 + γ1

α2 = β2 + γ2 + δ2
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Runge-Kutta Methods

1. Ten (10) free parameters remain to obtain various levels of accuracy.

2. Finding P (E) and Q(E) and then eliminating the β’s results in the four conditions

µ1 + µ2 + µ3 + µ4 = 1 (1)

µ2α + µ3α1 + µ4α2 = 1/2 (2)

µ3αγ1 + µ4(αγ2 + α1δ2) = 1/6 (3)

µ4αγ1δ2 = 1/24 (4)

3. Guarantee that the five terms in σ exactly match the first 5 terms in the expansion of eλh .

4. To satisfy the condition that erµ = O(h5)

µ2α
2 + µ3α

2
1 + µ4α

2
2 = 1/3 (3)

µ2α
3 + µ3α

3
1 + µ4α

3
2 = 1/4 (4)

µ3α
2γ1 + µ4(α2γ2 + α2

1δ2) = 1/12 (4)

µ3αα1γ1 + µ4α2(αγ2 + α1δ2) = 1/8 (4)

5. Gives 8 equations for 10 unknowns.
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RK4 Method

1. Storage requirements and work estimates allow for a variety of choices for the remaining 2 parameters.

2. “Standard”4th order Runge-Kutta method expressed in predictor-corrector form

ûn+1/2 = un +
1
2
hu′n

ũn+1/2 = un +
1
2
hû′n+1/2

un+1 = un + hũ′n+1/2

un+1 = un +
1
6
h
[
u′n + 2

(
û′n+1/2 + ũ′n+1/2

)
+ u′n+1

]

3. Notice that this represents the simple sequence of conventional linear multistep methods

Euler Predictor

Euler Corrector

Leapfrog Predictor

Milne Corrector





≡ RK4
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